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ABSTRACT 
Investigations concerning an influence of heat transfer on magnetohydrodynamic peristaltic blood flow with porous 

medium through coaxial vertical asymmetric tapered channel- an analysis of blood flow study. Exact analytical 

expressions of axial velocity, temperature, heat transfer coefficient at y = h1 and y = h2 and pressure gradient are 

obtained under the assumption of long wave length and low Reynolds number approximations. The influence of the 

physical parameters of the problem on these distributions are discussed numerically and explained graphically. We 

notice that the temperature distribution (θ) increases by increase in Prandtl number, heat generator operator and non 

porous parameter and also we observe that the heat transfer coefficient (at the wall y = h1) decreases in the portion 

of the channel xε[0, 0.55] and then it is  increases in the rest of the channel xε[0.55,1] by increase in prandtl number 

and heat generator operator. 
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INTRODUCTION 
In view of its importance, numerous authors have studied peristalsis in both physiological and mechanical situations. 

LATHAM [1] made initial effort regarding peristaltic mechanism of viscous fluids. Afterward, this topic has been 

examined extensively for both non Newtonian and viscous. In another attempt, Jaffrin and Shapiro [2] investigated 

the basic principles of peristaltic pumping in a two dimensional channel. Mishra and Ramachandra Rao [3] whose 

results have been discussed the peristaltic flow of a Newtonian fluid in an asymmetric channel. Some important 

contributions beyond this, and of recent years, include the studies of S. Srinivas et al [4], T.Hayat et al [5], T.Hayat 

et al [6], M.H.Haroun [7], Kh.S. Mekheimer et al [8], S.Srinivas et al [9], T.Hayat et al et al [10], P. Hariharan [11], 

S. Nadeem et al [12] and T. Hayat et al [13]. 

The study of flow through porous medium has received much attention in recent years because of its application in 

industrial, bio-physical and hydrological problem, particularly in petroleum, chemical and nuclear industries. The 

role played by porous medium in the study of the flow of blood and other fluids and electro-osmosis, biological 

membranes and filters in bio-chemical engineering is more essential. This study is also useful to understand the 

mechanism of transfer heat from the deep interior of the earth to a shallow depth in the geothermal regions which is 

of vital importance in the present day grave power crisis. . In view of its considerable importance, Rapits et al.[14] 

studied a problem on free convection flow through a porous medium bounded by a vertical surface. Lukashave et 

al.[15] considered a mathematical model of the peristaltic transport of liquid initiated by the auto-wave process of 

mass transport through the porous capillary wall. In another attempt, Ravikumar et al [16, 17 & 18] whose results 

have been discussed on peristaltic fluid flows through the channels with porous medium. 
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The discussion on MHD flows is quite useful and attractive because it is used in magnetic wound or cancer tumor 

treatment causing hypothermia, targeted transport of drugs using magnetic particles as MRI (magnetic resonance 

imaging) to diagnose the disease. Some significant studies involving MHD flows were discussed by Srivastava and 

Agrawal [19] and Agrwal and Anwaruddin [20]. Some investigations on this topic have been directed through the 

Refs. (Hayat et al.[21 &22]. Subba Reddy et al. [23], Ravikumar [24, 25, 26&27]. 
The study of heat transfer on non-Newtonian/Newtonian fluids flow is also very important in many engineering 

applications, such as oil recovery, food processing, paper making and slurry transporting.Vajravelu et al., [28] have 

been analyzed the heat transfer characteristics on peristaltic flow in a porous annulus. Mekheimer and Abd 

Elmaboud [29] examined MHD and heat transfer effects on peristaltic transport of viscous fluid in a vertical 

annulus. Some of the important theoretical studies on peristalsis have been discussed by G. Radhakrishnamacharya 

[30], N. T.M. Eldabe [31], M. Kothandapani et al [32], Vasudev et al. [33] and F. M. Abbasi et al [34]. 

 

FORMULATION OF THE PROBLEM 

 
Let us consider the peristaltic flow of an incompressible viscous fluid with porous medium through a coaxial vertical 

asymmetric tapered channel under the action of a magnetic field. Asymmetry in the flow is due to the propagation of 

peristaltic waves of different amplitudes and phase on the channel walls. The heat transfer in the channel is taken 

into account. The flow is generated by sinusoidal wave trains propagating with constant speed c along the tapered 

asymmetric channel walls. 
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Where b is the half-width of the channel, d is   the wave amplitude, 𝑐 is the phase speed of the wave and m  (

 1m  is the non-uniform parameter, 𝜆 is the wavelength, t is the time and X is the direction of wave 

propagation. The phase difference   varies in the range 0 ≤   ≤ π,   = 0 corresponds to symmetric channel with 

waves out of phase and further b, d and   satisfy the following conditions for the divergent channel at the inlet  
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It is assumed that the left wall of the channel is maintained at temperature T0, while the right wall has temperature 

T1. 

The equations governing the motion for the present problem are 
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u and v are the velocity components in the corresponding coordinates, p is the fluid pressure, is the density of the 

fluid,  is the coefficient of the viscosity,  k1 is the permeability of the porous medium and k is the thermal 

conductivity, Cp is the specific heat at constant pressure, Q0 is the constant heat addition/absorption and T is the 

temperature of the fluid. 

The relative boundary conditions are 

0U , 0TT  ,  0CC   at 1HY   

0U , 1TT   , 1CC   at     2HY   

Introducing a wave frame (x, y) moving with velocity c away from the fixed frame (X, Y), the transformations 

 

x = X-ct, y = Y, u = U-c, v = V and p(x) = P(X, t)                     (7) 

Introducing the following non-dimensional quantities: 
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where 
b

d
 is the non-dimensional amplitude of channel ,


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 is the wave number,
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1  is the non - 

uniform parameter , Re is the Reynolds number, M is the Hartman number ,
2b

k
K  Permeability parameter , Pr is 

the Prandtl number and β is the heat generation parameter.  

 
SOLUTION OF THE PROBLEM 
In view of the above transformations (7) and non-dimensional variables (8), equations (3-6) are reduced to the 

following non-dimensional form after dropping the bars, 
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Applying long wave length approximation and neglecting the wave number along with low-Reynolds numbers. 

Equations (9-11) become 


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The relative boundary conditions in dimensionless form are given by 

u = -1, θ = 0 at       txxkhy 2sin1 11              (15) 

u = -1, θ = 1 at   txxkhy   2sin1 12                                                                                              (16) 

The closed form solutions for Equations (12 -14) with boundary conditions (15) and (16) are given by 
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The coefficients of the heat transfer Zh1 and Zh2 at the walls y = h1 and y = h2 respectively, are given by 
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(19)                      
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The solutions of the coefficients of the heat transfer be 
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VOLUMETRIC FLOW RATE 
The volumetric flow rate in the wave frame is defined by 
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The pressure gradient obtained from equation (23) and we can expressed as   
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  The instantaneous flux Q (x, t) in the laboratory frame is given by 

   21

1

2

1 hhqdyuQ

h

h

                                                                                                                             (25)                       

The average volume flow rate over one wave period (T = λ/c) of the peristaltic wave is defined as  
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From the equations (24) and (26), the pressure gradient can be expressed as          
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NUMERICAL RESULTS AND DISCUSSION 
Analytical expressions given by Equations (17), (18), (21),  (22) and (27) represent the axial velocity, Temperature, 

the coefficients of heat transfer at y = h1 and y =h2 and pressure gradient. 

The variation of axial velocity u with y for different values of Hartman number (M) with Da = 0.1, k1= 0.2, x = 0.6, t 

= 0.4,    = π/4, ε = 0.2, dp/dx = - 0.5 is presented in Fig. 1. It is clear that the axial velocity decreases by Hartman 

number M (M = 0.5, 1, 1.5) increased. From figure (2), it is obvious that the axial velocity (u) decreases with 

increase in Hartman number (M = 0.5, 1, 1.5) when Da = 0.5 with fixed other parameters. From the figures 1 to 2, 

we conclude that the axial velocity decreases with an increase in Hartman number (M) with Da ≥ 0.1.Figure (3) 

shows that the axial velocity with y for different values of porous parameter Da (Da = 0.1, 0.5, 1) with fixed M = 1, 

k1= 0.2, x = 0.6, t = 0.4,   = π/4, ε = 0.2, dp/dx = -0.5. This figure reveals that the axial velocity increases by 

increased in porous parameter. Figure (4) presents the various values of the porous parameter Da on the axial 
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velocity u. It is clear that the axial velocity increases when porous parameter increased (Da) with M = 1.5 being 

other parameters fixed. We conclude that from figures (3) and (4), the axial velocity increases with an increased 

porous parameter with M ≥ 1 being other parameters fixed. 

 

Figure (1): Velocity profile for different values of M with fixed Da = 0.1, k1= 0.2, x = 0.6,  

t = 0.4,   = π/4., ε = 0.2, dp/dx = -0.5. 

 

 

Figure (2): Velocity profile for different values of M with fixed Da = 0.5, k1= 0.2, x = 0.6, t = 0.4,  

   = π/4, ε = 0.2, dp/dx = -0.5. 
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Figure (3): Velocity profile for different values of Da with fixed M = 1, k1= 0.2, x = 0.6,  

t = 0.4,     = π/4, ε = 0.2, dp/dx = -0.5. 

 

Figure (4): Velocity for different values of Da with fixed M = 1.5, k1= 0.2, x = 0.6, t = 0.4,  

   = π/4, ε = 0.2, dp/dx = -0.5. 

Figure 5 reveals the pressure gradient verses x. This figure shows that the pressure gradient is maximum at the 
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being other parameters M = 0.5, k1= 0.1, t = π/4, ϕ = π/4, ε = 0.2, d = 2 fixed. Figure 9 and 10 shows axial pressure 
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gradient dp/dx is sketched via the dimensionless axial coordinate x for different values of ϕ. It is interested to notice 

that in both figures an axial pressure gradient increases in the in the portion of the channel xε [0, 0.5] and then it is 

decreasing in the rest of the channel xε [0.5, 1]. 

 

 

Figure (5): Pressure gradient (dp/dx) for different values of M with fixed Da = 0.1, k1= 0.1,  

t = π/4,    = π/4, ε = 0.2, Q   = 0.2, d = 2. 

 

Figure (6): Pressure gradient (dp/dx) for different values of M with fixed Da = 0.5, k1= 0.1,  

t = π/4,     = π/4, ε = 0.2, Q   = 0.2, d = 2. 
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Figure (7): Pressure gradient (dp/dx) for different values of Q  with fixed Da = 0.1, M = 0.5, k1= 0.1, 

 t = π/4,     = π/4, ε = 0.2, d = 2. 

 

Figure (8): Pressure gradient (dp/dx) for different values of Q   with Da = 0.5, M = 0.5,  

k1= 0.1, t = π/4,     = π/4, ε = 0.2, d = 2. 
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Figure (9): Pressure gradient (dp/dx) for different values of 
 
with Da = 0.1, M = 0.5, k1=0.1,  

t = π/4, Q   = 0.2, ε = 0.2, d = 2. 

 

Figure (10): Pressure gradient (dp/dx) for different values of    with fixed Da = 0.1, M = 1,  

k1= 0.1, t = π/4, Q   = 0.2, ε = 0.2, d = 2. 
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increasing the values of non-uniform parameter k1 (k1 = 0.1, 0.2, 0.3) when Pr ≥ 1 with fixed β = 1, x = 0.6, t =0. 4, ε 

= 0.2, 
 
 = π/6.  Hence we conclude from the figures the temperature increases in the entire tapered channel by 

increased in Pr, β and k1. 

 

Figure (11): Temperature profile (θ) for different values of Pr with fixed β = 1, k1= 0.1,  

x = 0.6, t =0. 4, ε = 0.2, 
 
 = π/6. 

 

 

Figure (12): Temperature profile (θ) for different values of Pr with fixed β = 2, k1= 0.1,  

x = 0.6, t =0. 4, ε = 0.2, 
 
 = π/6. 
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Figure (13): Temperature profile (θ) for different values of β with fixed Pr = 0.5, k1= 0.1, x = 0.6,  

t =0. 4, ε = 0.2, 
 
 = π/6. 

 

Figure (14): Temperature profile (θ) for different values of β with fixed Pr = 1, k1= 0.1,  

x =0.6, t =0. 4, ε = 0.2, 
 
 = π/6. 
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Figure (15): Temperature profile (θ) for different values of K1 with fixed Pr = 0.5, β = 1, 

 x = 0.6, t =0. 4, ε = 0.2, 
 
 = π/6. 

 

 

Figure (16): Temperature profile (θ) for different values of k1 with fixed Pr = 1, β = 1, x = 0.6, 

 t =0. 4, ε = 0.2, 
 
 = π/6. 
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20, it is clear that the heat transfer coefficient decreases in the region xε [0.0.55] and then it is increases in the region 

xε [0.55, 1] when heat generator operator β increased with Pr = 1(fig 19) and Pr = 1.5 (fig 20) with fixed t =0. 4, ε = 

0.2, ϕ = π/4. 

Figures (21-24) is illustrated to show that the heat transfer coefficient at the wall y =h2. It can be seen that the heat 

transfer coefficient increases in the region xε [0, 0.1]  [0.7, 1] and decreases in the region xε [0.1, 0.7] when 

increased Prandtl number and heat generation operator in entire tapered channel. 

 

 

Figure (17): Heat transfer coefficient at the wall y = h1 for different values of Pr with fixed  

β = 1, x = 0.6, t =0. 4, ε = 0.2, 
 
 = π/4. 

 

Figure (18): Heat transfer coefficient at the wall y = h1 for different values of Pr with fixed  

β = 2, t =0. 4, ε = 0.2, 
 
 = π/4. 
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Figure (19): Heat transfer coefficient at the wall y = h1 for different values of β with fixed  

Pr = 1, t =0. 4, ε = 0.2, 
 
 = π/4. 

 

Figure (20): Heat transfer coefficient at the wall y = h1 for different values of β with fixed  

Pr = 1.5, t =0. 4, ε = 0.2, 
 
 = π/4. 
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Figure (21): Heat transfer coefficient at the wall y = h2 for different values of Pr with fixed  

β = 1, x = 0.6, t =0. 4, ε = 0.2, 
 
 = π/4. 

 

Figure (22): Heat transfer coefficient at the wall y = h2 for different values of Pr with fixed  

β = 2, x = 0.6, t =0. 4, ε = 0.2, 
 
 = π/4. 
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Figure (23): Heat transfer coefficient at the wall y = h2 for different values of β with fixed  

Pr = 1, t =0. 4, ε = 0.2, 
 
 = π/4. 

 

Figure (24): Heat transfer coefficient at the wall y = h2 for different values of β with fixed  

Pr = 1.5, t =0. 4, ε = 0.2, 
 
 = π/4. 

CONCLUSIONS 
In this research article we have proposed a theoretical study of an influence of heat transfer on 

magnetohydrodynamic peristaltic flow of blood with porous medium through coaxial vertical asymmetric tapered 

channel- an analysis of blood flow study. The study has paid a special attention to examine the effects of Hartmann 

number, porous parameter, Prandtl number, heat generator operator, non uniform parameter, volume flow rate on the 

flow characteristics. The results are discussed through graphs and concluded to the following observations: 

(a) The velocity decreases when Hartman number increased (M). 
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(b) The velocity increases when porous parameter increases (Da). 

(c) Pressure gradient (dp/dx) increases as increase in Hartman number (M).  

(d) Pressure gradient (dp/dx) decreases when volume flow rate Q  increases. 

(e) Temperature distribution (θ) increases by increase in Prandtl number, heat generator operator and non 

porous parameter. 

(f) Heat transfer coefficient (at the wall y = h1) decreases in the region xε[0, 0.55] and then increases in the 

rest of the region xε[0.55,1] by increase in prandtl number and heat generator operator. 

(g) Heat transfer coefficient(at the wall y = h2) increases in the region xε [0, 0.1]  [0.7, 1] and then decreases 

in the rest of channel xε [0.1, 0.7] by increasing the values of prandtl number and heat generation operator 

in entire tapered channel  
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